Abstract

Vascular endothelial growth factor (VEGF)/VEGF receptor 2 and angiopoietin 1/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 signaling pathways regulate different, but complementary, aspects of blood vessel growth in tumors. Simultaneous inhibition of both pathways not only exhibits additive antiangiogenic effects but also overcomes the resistance to anti-VEGF therapy. Grape seed proanthocyanidins (GSPs) are widely consumed dietary supplements with antiangiogenic activity. However, the molecular mechanisms underlying their antiangiogenic action have not been fully understood. We hypothesized that GSPs modulate multiple signaling pathways to exhibit antiangiogenic effects. In the present study, we aimed to test this hypothesis by examining the effects of GSPs on human microvascular endothelial cell-1 and chick chorioallantoic membrane. Our results showed that GSPs inhibited the migration, matrix metalloproteinase-2 and -9 secretion, and tube formation of human microvascular endothelial cell-1 in vitro in a dose-dependent manner. In addition, chick chorioallantoic membrane angiogenesis assay showed that GSPs inhibited neovascularization in a dose-dependent manner. Furthermore, we demonstrated that GSPs inhibited the phosphorylation of VEGF receptor 2 and tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 as well as downstream signaling component extracellular signal-regulated kinase 1/2. In summary, these data suggest that GSPs inhibit both VEGF and angiopoietin 1 signaling to execute the antiangiogenic effects and indicate that GSPs could be developed as a pharmacologically safe chemopreventive agent against cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.