Abstract
Grape is one of the important fruit crops which is affected by diseases. The advents of digital camera and machine learning based approaches have facilitated recognition of plant diseases. Convolution Neural Network (CNN) is one of the types of architecture used in deep learning based approach. AlexNet is a category of CNN which is used in this study for classification of three diseases along with healthy leaf images obtained from PlantVillage dataset. Transfer learning-based approach is used where the pretrained AlexNet is fed with 4063 images of above categories. The model achieved 97.62% of classification accuracy. Feature values from the different layers of the same network are extracted and applied to Multiclass Support Vector Machine (MSVM) for performance analysis. Features from Rectified Linear unit (ReLu 3) layer of AlexNet applied to MSVM achieved the best classification accuracy of 99.23%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.