Abstract
Warm viticulture regions are associated with inferior wines, resulting from the interaction between microclimate and fruit biochemistry. Solar irradiance triggers biosynthetic processes in the fruit and dominates its thermal balance. Therefore, deciphering its impact on fruit metabolism is pivotal to develop strategies for fruit protection and ameliorate its quality traits. Here, we modified light quality and intensity in the fruit-zone and integrated micrometeorology with grape and wine metabolomics, allowing a complete assessment, from field to bottle. We analyzed the dynamics of fruit's adaptation to altered conditions during ripening and constructed temporal-based metabolic networks. Micrometeorological modifications shifted the balance between the major flavonoids, associating increased solar exposure with lower levels of anthocyanins and flavan-3-ols, and higher flavonols. Differences were fixed from 2 weeks postveraison until harvest, suggesting a controlled acclimation response rather than external modulation. Differences in grape composition manifested in the wine and resulted in higher color intensity and improved wine hue under partial shading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.