Abstract

Bisphenol A (BPA) is a harmful endocrine disrupting compound that alters not only classical cellular mechanisms but also epigenetic mechanisms. Evidence suggests that BPA-induced changes in microRNA expression can explain, in part, the changes observed at both the molecular and cellular levels. BPA is toxic to granulosa cells (GCs) as it can activate apoptosis, which is known to contribute to increased follicular atresia. miR-21 is a crucial antiapoptotic regulator in GCs, yet the exact function in a BPA toxicity model remains unclear. BPA was found to induce bovine GC apoptosis through the activation of several intrinsic factors. BPA reduced live cells counts, increased late apoptosis/necrosis, increased apoptotic transcripts (BAX, BAD, BCL-2, CASP-9, HSP70), increased the BAX/Bcl-2 ratio and HSP70 at the protein level, and induced caspase-9 activity at 12 h post-exposure. miR-21 inhibition increased early apoptosis and, while it did not influence transcript levels or caspase-9 activity, it did elevate the BAX/Bcl-2 protein ratio and HSP70 in the same manner as BPA. Overall, this study shows that miR-21 plays a molecular role in regulating intrinsic mitochondrial apoptosis; however, miR-21 inhibition did not make the cells more sensitive to BPA. Therefore, apoptosis induced by BPA in bovine GCs is miR-21 independent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.