Abstract

The reason ovarian function and fertility are diminished in women with a low antral follicle count (AFC), despite significant numbers of follicles remaining in ovaries, is unknown. The bovine model is unique to address this question because cattle and women with a low AFC exhibit similar phenotypic characteristics including a diminished ovarian reserve, reduced circulating concentrations of anti-Müllerian hormone (AMH) but heightened FSH secretion during reproductive cycles. Because women and cattle with a low AFC respond minimally to gonadotropin stimulation during IVF cycles or superovulation, granulosa cells in individuals with a low AFC are hypothesised to be refractory to FSH. The present study evaluates this hypothesis by testing whether capacity of granulosa cells to respond to FSH differs between cattle with a low and a high AFC. Granulosa cells from cattle with a low (≤15 follicles ≥3 mm in diameter) or a high (≥25 follicles) AFC were cultured with different doses of FSH. Treatments were evaluated by measurement of oestradiol (E), progesterone (P) and AMH in media and abundance of mRNAs for aromatase (CYP19A1), AMH, FSH receptor (FSHR) and oxytocin (OXT). Progesterone and OXT mRNA are well-established markers of granulosa cell luteinisation. Although high doses of FSH induced granulosa cell luteinisation, basal and FSH-induced increases in E and AMH production and expression of mRNAs for CYP19A1, FSHR and AMH in granulosa cells were much lower, while P production and OXT mRNA expression were higher in non-luteinised and luteinised granulosa cells from the low than the high AFC group. Granulosa cells in cattle with a low AFC are refractory to FSH action, which could explain why ovarian function, responsiveness to gonadotropin stimulation and fertility are diminished in individuals with a low versus a high AFC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call