Abstract

Previous studies of the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on HIV-1 replication in macrophages have had inconsistent results, variously reporting no effect, augmentation or inhibition of viral replication. To investigate the regulation of HIV-1 in monocyte-derived macrophages (MDM) by GM-CSF in vitro. The role of GM-CSF on HIV-1 replication was assessed as supernatant and intracellular p24 antigen concentrations and by HIV-1 DNA and mRNA production under different culture conditions. Expression of CD4 and CCR5 receptors was examined. The effect of GM-CSF with an E21R mutation, which binds only to the alpha-chain of GM-CSF receptor, was used as an additional control. GM-CSF consistently suppressed HIV-1 replication in human MDM in vitro, as assessed by supernatant and intracellular p24 antigen concentrations and HIV-1 gag mRNA expression. The inhibitory effect of GM-CSF on HIV-1 replication was observed regardless of HIV-1 strain, source of GM-CSF, stage of MDM maturation or timing of GM-CSF exposure in relation to HIV-1 infection. The effect was dose dependent and reversed by addition of a neutralizing monoclonal antibody (4D4). Flow cytometric analysis of surface expression of CD4 and CCR5 indicates that GM-CSF does not affect HIV-1 entry into MDM. Analysis of intracellular HIV-1 DNA and mRNA suggests that HIV-1 replication is inhibited at or before transcription. E21R GM-CSF had no effect on HIV-1 replication in MDM. GM-CSF regulates HIV-1 replication in MDM, inhibiting HIV-1 replication through binding to the beta-chain of the GM-CSF receptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call