Abstract

Interleukin (IL)-3, IL-5 and granulocyte macrophage colony-stimulating factor (GM-CSF) prolong the survival of eosinophils, which are conspicuous in asthmatic airways, but it is still controversial which one plays a major role in enhancing the survival of eosinophils in asthmatic airways. The role of these cytokines in airway eosinophilia was investigated using bronchoalveolar lavage (BAL) fluids from 11 symptomatic and nine asymptomatic patients with asthma and eight normal subjects. Eosinophil survival-enhancing activity (ESEA) was measured by a numerical change in viable eosinophils isolated from the peripheral blood of atopic patients and cultured with BAL fluids. ESEA was characterized by neutralization with antibodies to IL-3, IL-5 and/or GM-CSF. The differential count of BAL cells was achieved using Diff-Quik stain. T-cell subsets and activated T-cells were analysed by flow cytometry with dual stain using monoclonal antibodies to CD3, CD4, CD8 and CD25. ESEA was detected in eight of 11 BAL fluids of symptomatic asthma, but not in those of normal controls or asymptomatic asthmatics. In six symptomatic asthmatics, the mean percentage of inhibition in ESEA by anti-GM-CSF was higher than that of anti-IL-5 as well as anti-IL-3 (p<0.05). A mixture of antibodies to IL-3, IL-5 and GM-CSF totally inhibited the ESEA in four cases. The ESEA correlated with the percentage of eosinophils (p<0.05) and that of CD25(+)CD4 lymphocytes (p<0.05) of BAL cells. In conclusion, granulocyte macrophage colony-stimulating factor, rather than interleukin-3 or -5, is associated with eosinophil survival-enhancing activity inside the airways of symptomatic asthmatics. The activation of CD4 lymphocytes is related to the elevation of such activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call