Abstract

Development of small molecular mimics of larger polypeptide ligands is an important approach to pharmacophore design. One strategy for the development of such mimics is analysis of alternative ligands that bind to the same site as the native ligand. These allow examination of the structural and chemical constraints for binding within the setting of diverse backbone geometries. The use of antireceptor antibodies as alternative ligands has allowed the development of biologically active peptides in several ligand-receptor systems. This technology has been applied to the study of interactions between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor (GM-CSFR). GM-CSF is one of a family of signal-transducing cytokines and growth factors characterized by a four-helix bundle core structure. The GM-CSFR is comprised of an alpha-chain (GM-CSFR alpha) specific for GM-CSF, and a beta-chain (beta c) shared with the interleukin-3 and interleukin-5 receptors. At least two sites on GM-CSF have been implicated in the GM-CSF-GM-CSFR alpha/beta c ternary complex. In studies summarized here, synthetic peptide analogs of GM-CSF sequences were designed and used to map neutralizing epitopes. One neutralizing epitope corresponded to the A helix of GM-CSF, and a synthetic analog displayed biological activity as a GM-CSF antagonist in vitro, suggesting interaction with the GM-CSFR alpha/beta c complex. A second peptide comprising the B and C helices was recognized by monoclonal neutralizing antibodies and similarly displayed antagonist activity. Recombinant antibody (rAb) technology was also employed. An expression library of rAbs from mice immunized with neutralizing anti-GM-CSF antibodies was developed and screened with a neutralizing anti-GM-CSF monoclonal antibody. One clone which displayed receptor binding activity exhibited structural similarity with epitopes on GM-CSF previously implicated as interaction sites with the neutralizing monoclonal antibody. A synthetic peptide analog of the rAb inhibited GM-CSF bioactivity. Critical contact residues were predicted on the basis of structural similarity of the rAb peptide and GM-CSF. These studies indicate the feasibility of using rAbs in bioactive peptide design, providing lead compounds and information regarding contact residues for drug design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.