Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a widely expressed EGF superfamily member that induces mitogenic and/or chemotactic activities toward different cell types through binding to EGF receptors 1 or 4. Membrane-bound HB-EGF exerts growth activity and adhesion capabilities and possesses the unique property of being the receptor for diphtheria toxin (DT). Using molecular and functional techniques, we show that human polymorphonuclear granulocytes (PMN), which did not express HB-EGF in resting conditions, expressed it at mRNA and protein level, following incubation with granulocyte-macrophage colony-stimulating factor (GM-CSF). Other classic agonists for PMN (including lipopolysaccharide, phagocytable particles, tumor necrosis factor-alpha, or G-CSF) failed to induce HB-EGF. The effects of GM-CSF on HB-EGF mRNA levels were concentration-dependent, reached a plateau after 1 to 2 hours of stimulation, and did not require protein synthesis. After GM-CSF treatment, membrane-bound HB-EGF was detected by flow cytometry. At the same time, PMN acquired sensitivity to the apoptosis-promoting effect of DT, which, moreover, specifically suppressed the GM-CSF-induced priming of formyl-methionyl-leucyl-phenylalanine-stimulated superoxide anion release. Finally, soluble HB-EGF was detected in the PMN culture medium by a specific enzyme-linked immunosorbent assay. Thus, we provide evidence that HB-EGF is specifically inducible by GM-CSF in PMN and represents a novel peptide to be included in the repertoire of PMN-derived cytokines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.