Abstract

Administration of granulocyte colony-stimulating factor (G-CSF) results in the mobilization of hematopoietic progenitor and stem cells from the bone marrow into the peripheral blood. Although the mechanisms leading to the mobilization of primitive hematopoietic cells is not fully understood, it has been noted that the yield of mobilization in humans is correlated to the down-regulation of c-KIT/CD117 expression on mobilized cells. We sought to determine the mechanisms responsible for the reduced expression of c-KIT on mobilized hematopoietic progenitor cells. Mice were mobilized with G-CSF and primitive hematopoietic cells were collected from bone marrow and blood to analyze c-KIT expression. Using cell lines expressing mouse and human c-KIT and a recombinant protein comprising the entire extracellular domain of human c-KIT, we analyzed by flow cytometry and immunoblotting the proteolytic cleavage of c-KIT by proteases released in bone marrow extracellular fluids extracted from mobilized mice. Administration of G-CSF into mice results in the reduction of c-KIT expression on primitive hematopoietic cells in bone marrow and peripheral blood. Bone marrow extracellular fluids isolated from G-CSF-mobilized mice contain serine proteases that cleave c-KIT into discrete fragments. Proteases capable of cleaving c-KIT include neutrophil elastase, cathepsin G, proteinase-3 and matrix metalloproteinase-9. In addition to transcriptional controls, exocytosis, and ligand-induced internalization, the direct proteolytic cleavage of c-KIT by neutrophil and macrophage proteases represents a novel pathway to regulate the levels of c-KIT expression at the surface of hematopoietic cells and may be responsible in part for the down-regulation of c-KIT expression on mobilized hematopoietic progenitors in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.