Abstract

Introduction: Granulocyte-colony stimulating factor (G-CSF) is used routinely in clinical practice for the treatment of neutropenia and to increase generation of hematopoietic stem cells in bone marrow donors. A growing body of literature on the neurotrophic effects of G-CSF has led to clinical trials in stroke, Alzheimer's disease (AD) and Parkinson's disease (PD). Objectives: The primary objective of this study was to determine if G-CSF administration would rescue the nigro-striatal system and restore locomotor function after completion of a sub-acute course of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration (30 mg/kg i.p. for 5 days) in 12 month-old mice. A secondary aim was to determine if G-CSF affects the neuro-inflammatory response by modulating microglial activation in striatum and midbrain. Results: MPTP-treated mice were impaired on the rotometer test after the last dose of the toxicant and remained impaired until euthanasia. MPTP-treated mice that were given an 8-day regimen of G-CSF starting 2 days after the last dose of toxicant enhanced motor performance compared to the MPTP alone group. MPTP treatment depleted striatal DA (DA) levels; G-CSF given after MPTP resulted in a partial, significant repletion of DA levels. Total microglial burden in the striatum was increased significantly in MPTP-treated mice and was reduced after G-CSF rescue. Conclusion: G-CSF enhances recovery of DA nigro-striatal function from MPTP toxicity in part by modulating the microglial response to injury. The G-CSF receptor may provide a novel target for modifying the disease process in Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.