Abstract

The investigation of the Kolvitsa gabbro-anorthosite massif showed that its melanocratic layers conformable with metamorphic banding are mafic differentiates transformed into eclogite-like rocks during prograde metamorphism. During the peak and retrograde stage of the Svecofennian metamorphism in the White Sea region at t = 910–750°C and P = 14-7 kbar, the infiltration of Fe-, CO2-, Si-, and Na-bearing fluids with \(X_{H_2 O} < 0.4\) resulted in metasomatic alterations of the melanocratic gabbro-anorthosite interlayers, dissolution of a number of elements, and their reprecipitation with the formation of cross-cutting zoned metasomatic veins with abundant magnetite and ilmenite. The high content of hematite in the ilmenite suggests that the veins were formed at an increase in oxygen fugacity from \(\log f_{O_2 } = - 14.5\) to \(\log f_{O_2 } = - 11\), which caused the Fe2+ → Fe3+ transition and iron precipitation. The increase in at the conditions corresponding to the metamorphic peak was probably related to the neutralization of solutions during their infiltration through the gabbro-anorthosites. The reprecipitation of components and the formation of cross-cutting veins occurred owing to interaction between the melanocratic layers in the gabbro-anorthosites and a fluid phase and, contrary to previous models, did not involve the fluid transport of components from the zones of charnockite formation and granitization located far away from the sites of reprecipitation. This is demonstrated by the similarity of mineral compositions and major component contents in the melanocratic gabbro-anorthosite layers and cross-cutting metasomatic veins and regular distribution of trace elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call