Abstract

Ostertagia ostertagi is considered one of the most economically important bovine parasites. As an alternative to anthelmintic treatment, an experimental host-protective vaccine was previously developed on the basis of ASP proteins derived from adult worms. Intramuscular injection of this vaccine, combined with QuilA as an adjuvant, significantly reduced fecal egg counts by 59%. However, the immunological mechanisms triggered by the vaccine are still unclear. Therefore, in this study, the differences in immune responses at the site of infection, i.e., the abomasal mucosa, between ASP-QuilA-vaccinated animals and QuilA-vaccinated control animals were investigated on a transcriptomic level by using a whole-genome bovine microarray combined with histological analysis. Sixty-nine genes were significantly impacted in animals protected by the vaccine, 48 of which were upregulated. A correlation study between the parasitological parameters and gene transcription levels showed that the transcription levels of two of the upregulated genes, those for granulysin (GNLY) and granzyme B (GZMB), were negatively correlated with cumulative fecal egg counts and total worm counts, respectively. Both genes were also positively correlated with each other and with another upregulated gene, that for the IgE receptor subunit (FCER1A). Surprisingly, these three genes were also correlated significantly with CMA1, which encodes a mast cell marker, and with counts of mast cells and cells previously described as globule leukocytes. Furthermore, immunohistochemical data showed that GNLY was present in the granules of globule leukocytes and that it was secreted in mucus. Overall, the results suggest a potential role for granule exocytosis by globule leukocytes, potentially IgE mediated, in vaccine-induced protection against O. ostertagi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call