Abstract
As a solution of the sludge loss in the treatment of saline wastewater, the granulation of halophilic sludge was explored in this study. The inoculated estuarine sediment was granulated to an average diameter of 1155 ± 102 μm under the selective settling pressure in the airlift sequencing batch reactor (SBR) when the influent organic loading rate (OLR) was doubled to 0.36 g COD/L·day. The results indicated that the OLR doubled the amount of total extracellular polymeric substance (EPS) and that protein was predominant in the EPS (72.8 ± 2.0%). The correlation between aggregate size and protein content was better than that between aggregate size and polysaccharide content. The amount of alginate-like exopolysaccharides (ALE) increased linearly at the mature granular stage, co-occurring with the compact and elastic structure of the granules. According to the results of 16S rRNA high -throughput sequencing, the Shannon-Weaver index of mature granule decreased by >50% compared to the inoculated sediment. Bacteria of Propionibacteriaceae family constituted 34% of the population in granules and were in symbiotic relationship with halophiles of family Rhodocyclaceae, Vibrionaceae, Flavobacteriaceae, and Cryomorphaceae. The aerobic halophilic granular sludge showed COD removal efficiency of 90.9 ± 0.8% and ammonia removal efficiency of 72.6 ± 4.0% for 30 g/L saline wastewater. An average nitrite accumulation ratio of 94.5 ± 2.9% was observed during nitrification. Granulation of halophilic sludge provides an effective solution to the saline sludge loss problem, which is a step forward to realize the biological treatment of saline wastewater by halophiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.