Abstract

The aim of this study was to evaluate the influence of supplemental granulated cane sugar (GCS) levels (0, 13.3, 26.6, and 39.9% on a dry matter basis) in a steam-flaked corn-based finishing diet on measures of ruminal fermentation and the site and extent of nutrient digestion. Four Holstein steers (251 ± 3.6 kg live weight) with “T” type cannulas in the rumen and proximal duodenum were used in a 4 × 4 Latin square experiment to evaluate the treatments. The experiment lasted 84 d. Replacing steam-flaked corn (SFC) with GCS linearly decreased the flow of ammonia-N (NH3-N) to the small intestine, increasing the flow of microbial nitrogen (MN; quadratic effect, p = 0.02), ruminal N efficiency (linear effect, p = 0.03) and MN efficiency (quadratic effect, p = 0.04). The ruminal digestion of starch and neutral detergent fiber (NDF) decreased (linear effect, p ≤ 0.02) as the level of GCS increased. The postruminal digestion of organic matter (OM), neutral detergent fiber (NDF), and starch were not affected by the GCS inclusion. However, postruminal N digestion decreased (linear effect, p = 0.02) as the level of GCS increased. There were no treatment effects on total tract OM digestion. However, total tract NDF and N digestion decreased (linear effect, p ≤ 0.02) as the level of GCS increased. The ruminal pH decreased (linear effect, p < 0.01) as the GCS increased in the diet. The ruminal acetate molar proportion decreased (linear effect, p = 0.02) and the ruminal valerate molar proportion tended to increase (linear effect, p = 0.08) as the level of GCS increased. It is concluded that replacing as much as 13% of SFC with GCS in a finishing diet will enhance the efficiency of N utilization (g non-ammonia-N entering the small intestine/g N intake) without detrimental effects on total tract OM digestion. The inclusion of GCS decreased the ruminal proportion of acetate linearly without an effect on the acetate-to-propionate ratio or estimated methane production. Some of the effects on N utilization at a high level of GCS inclusion (27 and 40%) can be magnified by the differences in the CP content between diets. A higher level of GCS supplementation in the diet decreased the ruminal pH below 5.5, increasing the risk of ruminal acidosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call