Abstract

Granular materials posses disorder structures which are the origin of dynamical heterogeneity. On the basis of non-equilibrium thermodynamics, the structure characteristics, complex deformations, and energy dissipations are analysed. Based on the photoelastic tests, the granular elasticity is discussed. The strain increments are classified into three categories. By means of the non-equilibrium thermodynamics, two granular temperatures, Tk, Tc, are introduced as the state variables, which denote the fluctuations of the kinetic energy and the elastic energy, respectively. Further, a two-granular-temperature thermodynamics (i.e. TGT theory) are developed for granular materials. The thermodynamic forces and fluxes are particularly analyzed. TGT theory is also compared with the previous internal variable thermodynamics for sands (IVT theory) developed a few decades ago. It is found that from TGT the Gibbs free energy in the IVT theory can be deduced, and the energy dissipation function can be apparently expressed from TGT theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.