Abstract

Free volume and polymer chain architecture play important roles in controlling the glass transition temperature $$T_g$$ of polymer nanocomposites. Various changes in $$T_g$$ with respect to nanoparticle (NP) loading have been reported, depending, in part, on whether there are attractive or repulsive interactions between the polymer and NPs. However, even with no enthalpic interaction, there are ostensible changes in $$T_g$$ that must be attributed to topological factors, such as chain stiffness and nanoparticle size. Here we adopt a macroscopic granular model to help understand frustrated dynamics in glassy polymer nanocomposites. Mixtures of granular chains with spherical inclusions were prepared with prescribed sphere size, chain length, and mixture composition. We measured the time to reach a close–packed, jammed state when these composites were subjected to controlled mechanical shaking. The compaction dynamics reveal that spherical inclusions profoundly influence the chain relaxation dynamics. In the long-chain limit, increasing the NP loading furnishes a minimum in the chain relaxation time, which may be loosely associated with an intermediate minimum in $$T_g$$ with respect to nanoparticle loading for polymer nanocomposites. This minimum occurs for spheres having different sizes, but only at concentrations where the characteristic sphere separation is comparable to the chain loop size. This observation may explain the variety of contrasting trends that have been found in the literature for the dependence of $$T_g$$ on nanoparticle loading in polymeric nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.