Abstract
A Pawlak approximation space is a pair of a ground set/space and a quotient set/space of the ground set induced by an equivalence relation on the ground set. The quotient space is a simple granulation of the ground space such that an equivalence class is a granule of objects in the ground space and, at the same time, a single granular object in the quotient space. The new two-space view leads to more insights into and a deeper understanding of rough set theory. In this paper, we revisit results from rough sets from the two-space perspective and introduce the notions of granular rough sets and probabilistic granular rough sets in the quotient space, as three-way approximations of sets in the ground space. We propose a concept of granular shadowed sets in the quotient space, as three-way approximations of fuzzy sets in the ground space. We formulate a cost-sensitive method to construct a granular shadowed set from a fuzzy set. We show that, when the costs satisfy some conditions, the three granular approximations become the same for the special case where a fuzzy set is in fact a set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.