Abstract

AbstractThe granular pressure and granular temperature underpin various models of granular flows while they are playing an increasing role in modeling of other phenomena in granular systems such as heat transfer, segregation, erosion, attrition, and aggregation. The development and validation of these theories demand experimental determination of these two quantities. Diffusing wave spectroscopy (DWS) is now an accepted technique for measurement of granular temperature in dense granular systems. Using granular temperature data obtained from DWS with the kinetic theory of granular flow, we have derived the granular pressure data for a liquid‐fluidized bed. The determined variation of the mean bed granular pressure with mean bed solid volume fraction compares favorably with previously published experimental data and theoretical models of others. Where discrepancies do occur, they may be attributed to differences in particle inertia, suggesting further work on granular pressure models is required. Finally, we report the variation of the granular pressure with height above the distributor for several mean solids volume fractions. © 2011 American Institute of Chemical Engineers AIChE J, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.