Abstract

Fe 3 O 4 thin film prepared by pulsed laser deposition on Si (100) substrate has been investigated by transmission electron microscopy from plane and cross-sectional views. The thin film, which shows a spinel structure as characterized by selected-area diffraction, is about 180 nm thick with granular growth of particle size about 50 nm. High resolution electron microscopy observations indicate reduced thickness of the native SiO2 layer between the thin film and Si due to rastering of the substrate surface by an unfocused laser beam before the deposition. By using a 220 diffraction spot in two beam condition near the 〈001〉 axis of a single Fe3O4 grain, antiphase boundaries (APBs) inside the grains could be clearly resolved. The existence of APBs in the thin film is consistent with the magnetic experiments including an open hysteresis loop and unsaturated magnetization in relatively high magnetic fields. This study suggests that APBs are not unique to Fe3O4 films grown on MgO substrates.

Highlights

  • Granular growth of Fe 3 O 4 thin films and its antiphase boundaries prepared by pulsed laser deposition

  • View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/89/11?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Fourier transform infrared study of pulsed laser deposited Fe 3 O 4 thin films grown on different substrates AIP Conf

Read more

Summary

Introduction

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call