Abstract
Granular dynamics simulations have been carried out of vertical feed two-dimensional heap formation by a freefall method using a more realistic granule interaction law than has been employed in previous studies to permit prolonged contacts between adjacent granules. Stable heaps are found to form only on a geometrically rough base comprised of discrete particles, and heap formation is only weakly sensitive to the value of the contact friction coefficient. The appearance of avalanches, the pressure distribution on the base, and the voidage distribution are sensitive to the analytic form of the elastic component of the normal interaction, with a soft-sphere r-36 potential giving more realistic behavior than an equivalent Hooke law interaction with the same apparent spring constant. The r-36 interaction gives more realistic assembly dynamics as it introduces medium range collective motion caused by particle roughness and shape found in typical granular materials, without having to model anisotropic particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.