Abstract

A mixture of 13X molecular sieve (13XMS) particles and glass particles with identical diameters is placed in a cylindrical container. Under vertical vibration, heavier glass particles tend to cluster and are wrapped inside the convection of 13XMS particles, resulting in the granular core phenomenon. The vibration frequency f strongly influences particle convection and particle cluster modes. By contrast, the effect of the dimensionless acceleration amplitude Γ can be neglected. For different f ranges, the granular core is classified as center-type and ring-type cores. For the center-type core, heavy particles are distributed as an approximate zeroth-order Bessel function of the first kind in the radial direction and an exponential function in the height direction. For the ring-type core, the concentration of heavy particles follows the power-series function in the radial direction. A granular transport model is then established based on heavy-particle movements under steady state to analyze the effect of vibration parameters and granular convection on density segregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.