Abstract
Human beings solve problems in different granularity worlds and shift from one granularity world to another quickly. It reflects human beings’ intelligence in problem solving to some extent. In the era of big data, some new problems are emerging in real life. For example, traditional big data processing models always compute from raw data, failing to consider the granularity feature of human. Thus, they are hard to solve the 3 V characteristics of big data. Granular computing (GrC) combines the multi-granularity thinking pattern of human intelligence with problem solving mode to deal with big data. Based on the related notions and characteristics of GrC, this paper reviews the previous studies of GrC in three progressive levels: granularity optimization, granularity conversion and multi-granularity joint problem solving. Then we proposed the diagram for relationship among three basic modes of GrC. Furthermore, the feasibility of GrC for big data processing is analyzed. Some research prospects of granular computing are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.