Abstract

Mesoscopic Josephson junctions, consisting of overlapping superconducting electrodes separated by a nanometre-thin oxide layer, provide a precious source of nonlinearity for superconducting quantum circuits. Here we show that in a fluxonium qubit, the role of the Josephson junction can also be played by a lithographically defined, self-structured granular aluminium nanojunction: a superconductor-insulator-superconductor Josephson junction obtained in a single-layer, zero-angle evaporation. The measured spectrum of the resulting qubit, which we nickname gralmonium, is indistinguishable from that of a standard fluxonium. Remarkably, the lack of a mesoscopic parallel plate capacitor gives rise to an intrinsically large granular aluminium nanojunction charging energy in the range of tens of gigahertz, comparable to its Josephson energy. We measure coherence times in the microsecond range and we observe spontaneous jumps of the value of the Josephson energy on timescales from milliseconds to days, which offers a powerful diagnostics tool for microscopic defects in superconducting materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call