Abstract

Massive multiple input multiple output (MIMO) enabled grant-free random access (mGFRA) stands out as a promising random access (RA) solution, thus effectively addressing the need for massive access in massive machine-type communications (mMTCs) while ensuring high spectral efficiency and minimizing signaling overhead. However, the bottleneck of mGFRA is mainly dominated by the orthogonal preamble collisions, since the orthogonal preamble pool is small and of a fixed-sized. In this paper, we explore the potential of non-orthogonal preambles to overcome limitations and enhance the success probability of mGFRA without extending the length of the preamble. Given the RA procedure of mGFRA, we analyze the factors influencing the success rate of mGFRA with non-orthogonal preamble and propose to use two types of sequences, namely Gold sequence and Gaussian distribution sequence, as the preambles for mGFRA. Simulation results demonstrate the effectiveness of these two types pf non-orthogonal preambles in improving the success probability of mGFRA. Moreover, the system parameters’ impact on the performance of mGFRA with non-orthogonal preambles is examined and deliberated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call