Abstract
AbstractLarge phenocrysts, known as megacrysts, are focal points for research due to their ability to encapsulate large inclusions suitable for precise chemical analyses. Ankaramite, a distinctive type of undifferentiated volcanic rock, stands out due to its high MgO and CaO contents and the presence of abundant Ca‐rich clinopyroxene (diopside) and less common Mg‐rich olivine phenocrysts. In this study, granitic melt inclusions together with carbonic fluid inclusions were identified within diopside megacrysts of ankaramitic basalt dikes in the Kamisano region, Yamanashi Prefecture, Japan. The identified melt inclusions are completely crystallized and primarily composed of quartz, alkali feldspar, and plagioclase, with smaller amounts of pargasite, augite, apatite, and sulfides. Small amounts of residual glass were also occasionally observed in the inclusions. The average chemical composition of these granitic melts within the inclusions corresponds to that of calc‐alkaline granodiorite and the melts are characterized by low water content (0.38 wt%) and high concentrations of sulfur (7000 ppm), copper, and iron. The findings suggested that the composition of granitic melt inclusions may provide insights into the characteristics of near‐surface hydrothermal metal ore deposits. The diopside megacrysts also contain CO2H2O fluid inclusions, which are completely crystallized and mainly comprised of calcite and chlorite, along with small amounts of quartz. The crystals are interpreted to have formed by the reaction of original CO2H2O fluids and host diopside. The diopside megacrysts are estimated to have started crystallization from tholeiitic basalt at a depth of ~30 km in the lower crust, and trapped fluids and granitic melts as inclusions at a shallower depth when the tholeiitic magma ascended.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.