Abstract

Summary The Granger representation theorem states that a cointegrated vector autoregressive process can be decomposed into four components: a random walk, a stationary process, a deterministic part, and a term that depends on the initial values. In this paper, we present a new proof of the theorem. This proof enables us to derive closed-form expressions of all terms of the representation and allows a unified treatment of models with different deterministic specifications. The applicability of our results is illustrated by examples. For example, the closed-form expressions are useful for impulse response analyses and facilitate the analysis of cointegration models with structural changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.