Abstract
AbstractWe study causality between bivariate curve time series using the Granger causality generalized measures of correlation. With this measure, we can investigate which curve time series Granger‐causes the other; in turn, it helps determine the predictability of any two curve time series. Illustrated by a climatology example, we find that the sea surface temperature Granger‐causes sea‐level atmospheric pressure. Motivated by a portfolio management application in finance, we single out those stocks that lead or lag behind Dow Jones industrial averages. Given a close relationship between S&P 500 index and crude oil price, we determine the leading and lagging variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.