Abstract

The inference of the couplings of an Ising model with given means and correlations is called the inverse Ising problem. This approach has received a lot of attention as a tool to analyze neural data. We show that autoregressive methods may be used to learn the couplings of an Ising model, also in the case of asymmetric connections and for multispin interactions. We find that, for each link, the linear Granger causality is two times the corresponding transfer entropy (i.e., the information flow on that link) in the weak coupling limit. For sparse connections and a low number of samples, the ℓ 1 regularized least squares method is used to detect the interacting pairs of spins. Nonlinear Granger causality is related to multispin interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.