Abstract
This article introduces an efficient technique for the calculation of vapor-liquid equilibria of fluids. Umbrella Sampling Monte Carlo simulations in the grand canonical ensemble were conducted for various types of molecules. In Umbrella Sampling, a weight function is used for allowing the simulation to reach unlikely states in the phase space. In the present case this weight function, that allows the system to overcome the energetic barrier between a vapor and liquid phase, was determined by a trivialized Density Functional Theory (DFT) using the PC-SAFT equation of state. The implementation presented here makes use of a multicanonical ensemble approach to divide the space of fluctuating particle number N into various subsystems. The a priori estimate of the weight function from the analytic DFT allows the parallelization of the calculation, which significantly reduces the computation time. In addition, it is shown that the analytic equation of state can be used to substitute sampling the dense liquid phase, where the sampling of insertion and deletion moves become demanding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.