Abstract

The objective of this study is to investigate the methane adsorption performance of fullerene pillared graphene nanocomposites (FPGNs) with adjustable micro and meso porous morphology and high surface/weight ratios. Different types of fullerenes are considered as pillar units to adjust the porosity of FPGNs. The gravimetric, volumetric and deliverable methane storage capacities of FPGNs are examined using grand canonical Monte Carlo (GCMC) simulations. The lithium doping strategy is also employed to further improve the methane adsorption performance of FPGNs. GCMC simulations revealed that FPGNs have promising potential for methane storage applications with the appropriate selection of design parameters. In particular, the simulation results demonstrated that the gravimetric absolute methane uptake of FPGNs could reach 12.5 mmol/g at 298 K and 40 bars and, this value could be increased up to 19.7 mmol/g with appropriate doping ratio under the same conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.