Abstract

Grana formation is a prominent feature of the ultrastructure of chlorophyll b-containing chloroplasts, serving to fine-tune photosynthetic efficiency. This paper examines the physical forces that determine the state of minimum free energy of the chloroplast as manifested by grana formation. In particular, it considers the interplay of van der Waals attraction, electrostatic repulsion and short-range hydration repulsion between thylakoid membranes. In addition to these interactions as determinants of the free energy of the system, it is also proposed that ordering of thylakoid membranes and of intramembrane protein complexes is driven by an increase in the overall entropy of the system. This local order may partly come about by an increase in entropy associated with a greater free volume for diffusion of membrane and stromal components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.