Abstract

Ultralong SnS2 nanobelts with a high production yield up to ∼98% were synthesized via a gram-scale and template-free solvothermal route. The synthetic mechanism of these intriguing ultralong nanobelts was proposed to be from the synergetic effect of the layered CdI2-type structure of SnS2 and surface-modification of the capping reagent dodecanethiol. The resulting SnS2 nanobelts showed a high specific capacity of 640 mA h g−1 and stable cycling ability (560 mA h g−1 after 50 cycles), which is much better than a graphite anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.