Abstract

While Model Predictive Control (MPC) is a promising approach for network-wide control of urban traffic, the computational complexity of the, often nonlinear, online optimization procedure is too high for real-time implementations. In order to make MPC computationally efficient, this paper introduces a parameterized MPC (PMPC) approach for urban traffic networks that uses Grammatical Evolution to construct continuous parameterized control laws using an effective simulation-based training framework. Furthermore, a projection-based method is proposed to remove the nonlinear constraints that are imposed on the parameters of the parameterized control laws and to guarantee the feasibility of the solution of the MPC optimization problem. The performance and computational efficiency of the constructed parameterized control laws are compared to those of a conventional MPC controller in an extensive simulation-based case study. The results show that the parameterized control laws, which are automatically constructed using Grammatical Evolution, decrease the computational complexity of the online optimization problem by more than 80% with a decrease in performance by less than 10%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.