Abstract

Neural networks have revolutionised the way we approach problem solving across multiple domains; however, their effective design and efficient use of computational resources is still a challenging task. One of the most important factors influencing this process is model hyperparameters which vary significantly with models and datasets. Recently, there has been an increased focus on automatically tuning these hyperparameters to reduce complexity and to optimise resource utilisation. From traditional human-intuitive tuning methods to random search, grid search, Bayesian optimisation, and evolutionary algorithms, significant advancements have been made in this direction that promise improved performance while using fewer resources. In this article, we propose HyperGE, a two-stage model for automatically tuning hyperparameters driven by grammatical evolution (GE), a bioinspired population-based machine learning algorithm. GE provides an advantage in that it allows users to define their own grammar for generating solutions, making it ideal for defining search spaces across datasets and models. We test HyperGE to fine-tune VGG-19 and ResNet-50 pre-trained networks using three benchmark datasets. We demonstrate that the search space is significantly reduced by a factor of ~90% in Stage 2 with fewer number of trials. HyperGE could become an invaluable tool within the deep learning community, allowing practitioners greater freedom when exploring complex problem domains for hyperparameter fine-tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.