Abstract

Sequence-to-sequence neural architectures are the state of the art for addressing the task of correcting grammatical errors. However, large training datasets are required for this task. This paper studies the use of sequence-to-sequence neural models for the correction of grammatical errors in Basque. As there is no training data for this language, we have developed a rule-based method to generate grammatically incorrect sentences from a collection of correct sentences extracted from a corpus of 500,000 news in Basque. We have built different training datasets according to different strategies to combine the synthetic examples. From these datasets different models based on the Transformer architecture have been trained and evaluated according to accuracy, recall and F0.5 score. The results obtained with the best model reach 0.87 of F0.5 score.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.