Abstract

Mining frequent subgraphs is an important operation on graphs; it is defined as finding all subgraphs that appear frequently in a database according to a given frequency threshold. Most existing work assumes a database of many small graphs, but modern applications, such as social networks, citation graphs, or protein-protein interactions in bioinformatics, are modeled as a single large graph. In this paper we present GraMi, a novel framework for frequent subgraph mining in a single large graph. GraMi undertakes a novel approach that only finds the minimal set of instances to satisfy the frequency threshold and avoids the costly enumeration of all instances required by previous approaches. We accompany our approach with a heuristic and optimizations that significantly improve performance. Additionally, we present an extension of GraMi that mines frequent patterns. Compared to subgraphs, patterns offer a more powerful version of matching that captures transitive interactions between graph nodes (like friend of a friend) which are very common in modern applications. Finally, we present CGraMi, a version supporting structural and semantic constraints, and AGraMi, an approximate version producing results with no false positives. Our experiments on real data demonstrate that our framework is up to 2 orders of magnitude faster and discovers more interesting patterns than existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.