Abstract

Background GRAM structural domain-containing protein 1A (GRAMD1A) is upregulated in a variety of human cancer tissues and is closely associated with tumourigenesis and progression. Methods Patient RNA-sequencing data and clinicopathological information were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The expression of GRAMD1A in kidney cancer cell lines and KIRC patients was analysed by quantitative polymerase chain reaction (qPCR). Receiver Operator Characteristic (ROC) curves, nomograms, Kaplan-Meier analysis, forest plots, and COX analysis were used to assess the diagnostic and prognostic value of GRAMD1A in KIRC, and gene set enrichment analysis (GSEA) was used to explore its potential signalling pathways. In addition, the Sangerbox website, Kaplan-Meier plotter database, and TISIDB and TIMER databases were used to further analyse the correlation of GRAMD1A with microsatellite instability (MSI), tumour mutational burden (TMB), immune checkpoint genes, and tumour-infiltrating lymphocytes (TILs). Results GRAMD1A was significantly highly expressed in KIRC and associated with shorter overall survival and relapse-free survival (P < 0.05). The AUC value of the ROC curve to identify KIRC and normal renal tissues was 0.942. Forest plot and COX analysis visualized that GRAMD1A could be an independent prognostic factor in KIRC patients (P < 0.01), and nomograms to determine the overall survival (OS) of KIRC patients also showed good efficacy (C-index: 0.776). Moreover, Spearman correlation analysis showed a positive correlation between GRAMD1A and MSI, TMB (P < 0.01). On the other hand, GRAMD1A was also found to be closely associated with immune checkpoint genes. Meanwhile, patients with KIRC with high GRAMD1A expression had a relatively low hazard ratio (HR) of death when B lymphocytes, natural killer T cells, CD4+ T lymphocytes, CD8+ T lymphocytes, and macrophages were enriched in the tumour microenvironment (TME), and a greater HR of death when regulatory T lymphocytes with tumour-specific immunosuppressive effects were significantly enriched. Last, GSEA shows that GRAMD1A is closely associated with the regulation of energy metabolism in KIRC. Conclusions GRAMD1A is a promising diagnostic and prognostic biomarker for patients with KIRC, and its biological function correlates to some extent with immune infiltration in TME.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call