Abstract
The control over contagious diseases caused by pathogenic organisms has become a serious health issue. The extensive usage of antibiotics has led to the development of multidrug-resistant bacterial strains. In this regard, metal-oxide-based antibacterial nanomaterials have received potential research interest due to the efficient prevention of microorganism growth. In this study, splat-shaped Ag–TiO2 nanocomposites (NCs) were synthesized on the gram scale and the enhanced antibacterial properties of TiO2 in the presence of silver were examined. The formation of Ag–TiO2 NCs was analyzed through various characterization techniques. The cell viability experimental results demonstrated that the Ag–TiO2 NCs have good biocompatibility. The antibacterial activity of the prepared Ag–TiO2 NCs was tested against the Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacterial strains. The Ag–TiO2 NCs exhibited promising and superior antibacterial properties compared to TiO2 nanospheres as confirmed by the bacterial growth and inhibition zone. The improvement in the antibacterial activity was attributed to the synergistic effect of the hybrid nature of TiO2 nanoparticles in the presence of Ag.
Highlights
The rapid industrial development required to supply the necessities of the global population has certainly impacted the natural environment
No impurity peaks were observed in addition to Ag and TiO2, indicating that the formation of the Ag–TiO2 nanocomposite was comparable to previously reported studies
The synthesis of the TiO2 and Ag–TiO2 nanocomposites using the polyvinylpyrrolidone (PVP)-assisted hydrothermal method is illustrated in Scheme 1
Summary
The rapid industrial development required to supply the necessities of the global population has certainly impacted the natural environment. The countries with a high population have been facing the risk of infectious diseases caused by pathogenic organisms. The existence of airborne pathogenic microorganisms with a high reproduction rate, such as virus, fungi and Beilstein J. Bacteria, has an influence on the human health and environment. It is a challenge to find remedies against these bacteria to control the permanent adhesive reaction. The Food and Drug Administration (FDA) has approved some potential antibacterial agents based on polymers and layer-by-layer coating to prevent pathogenic bacteria
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.