Abstract

In recent years, solid electrolytes have become an enticing alternative to liquid electrolytes in lithium based batteries. However, the high synthesis temperatures and difficult optimization of solid-state electrolytes are a significant drawback in a high-scale application. In this work, we demonstrate that the synthesis process of garnet-based Li7La3Zr2O12 (LLZO) electrolyte can be accelerated while reducing the formation temperature of cubic LLZO to about 720 °C from a standard temperature of 780 °C by supplementing the process with a carbon additive. These carbon-rich LLZO samples have a homogeneous particle distribution with a decreased average size, which is influenced by the type of carbon additive itself. The materials with high carbon content show an improved densification after hot-pressing at a low temperature of 800 °C, which is reflected in their electrochemical performance, since LLZO sample with 10% of DENKA carbon additive shows a total ionic conductivity of 5.95 × 10−5 S cm−1, about 40% higher than the one of carbon-free LLZO (3.53 × 10−5 S cm−1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.