Abstract

In the paper, an analogue of the Gram points used in the theory of the Riemann zeta-function is introduced for zeta-functions of normalized Hecke-eigen cusp forms of weight κ. Some analytic properties of those points are studied, and the first ten Gram points for κ⩽12 are calculated. The main attention is devoted to the universality of zeta-functions of cusp forms on the approximation of analytic functions by shifts involving the sequence of Gram points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.