Abstract

Since financial series are usually heavy tailed and skewed, research has formerly considered well-known leptokurtic distributions to model these series and, recently, has focused on the technique of adjusting the moments of a probability law by using its orthogonal polynomials. This paper combines these approaches by modifying the moments of the convoluted hyperbolic secant. The resulting density is a Gram–Charlier-like (GC-like) expansion capable to account for skewness and excess kurtosis. Multivariate extensions of these expansions are obtained on an argument using spherical distributions. Both the univariate and multivariate (GC-like) expansions prove to be effective in modeling heavy-tailed series and computing risk measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.