Abstract

The finite strain of clasts (maximum aspect ratio varying from 2 to 40) in a deformed conglomerate from Dry Hill, Plymouth, Vermont, correlates inversely with the average grain size (300-150 μm) in the clast, suggesting that the operative deformation mechanism was grain-size sensitive. In a general way, the average quartz grain size appeared to be smaller in those clasts with higher volume of minerals other than quartz. Dislocation densities varied by as much as a factor of 10 from grain to grain within a clast, but the average dislocation density was relatively constant from clast to clast. If grain-size sensitivity of strength is accepted as a working hypothesis, other elements of the microstructure, such as grain flattening, grain morphology, and dislocation structure can be reconciled as happening either through a late, low strain, high stress pulse—if the current palaeostress indicators are correct to within a factor of 10 or as happening concurrently with the grain-size sensitive mechanism if the current palaeostress estimates are in error. The evidence from this study agrees with several previously published suggestions that grain-size sensitive deformation occurs in the crust for quartzose rocks with grain size of 100 to 300 μm at temperatures of 350 to 420°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.