Abstract

The grain-size distribution of surface sediments in the Bohai Sea (BS) and the northern Yellow Sea (NYS), and its relationship with sediment supply and hydrodynamic environment were investigated based on grain-size compositions of surface sediments and modern sedimentation rates. The results showed that the surface sediments in the BS and the NYS were primarily composed of silty sand and clayey silt with a dominant size of silt. In addition, the Yellow River delivered high amount of water and sediments to the BS, and they are dominated in surface sediments (mainly silt) in the Bohai Bay, the Yellow River mouth, the center of the BS, and the north coast of Shandong Peninsula. The coarse-grained sediments were mainly deposited at the river mouth due to the estuarine filtration and physical sorting. Meanwhile, there was a significant relationship among the modern sedimentation rate, the surface sediment grain size distribution and sediment transport pattern. The areas with coarser surface sediments generally corresponded low sedimentation rates because of strong erosion; whereas the sedimentation rate was relatively high at the place that the surface sediments were fine-grained. Furthermore, the grain-size trend analysis showed that the areas with fine-grained surface sediments such as the mud area in the central BS and the upper Liaodong Bay were the convergent centers of surface sediments, except for the Bohai Bay and the subaqueous Yellow River Delta where offshore sediment transport was evident.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.