Abstract

In ductile shear zones, the strain shown by the rocks depends much on the composition and shape of the mineral constituents. Under simple shear, quartz grains commonly reorient themselves in the direction of tectonic transport or flow. In ductile shear zones, quartz grains are elliptically stretched in the direction of mylonitic foliation to accommodate the imposed ductile strain. Our observations on the rocks of a crustal scale shear zone, the Main Central Thrust (MCT) of the Himalaya, however, reveal that at several places of the shear zone the quartz grains are polygonal and show planar boundaries. The fabric of rocks at such places is not compatible with that of the prevailing fabric of rocks, and can be described as strain insensitive fabric. Following the Panozzo (J. Struct. Geol. 6:215–221, 1984) method, we have estimated strain from quartz grains that show planar boundaries. Our results show that in the MCT zone, the areas of high ductile strain, as existing near the trace of the MCT, the amount of strain shown by such grains of quartz is low, while in areas of low strain, as existing in areas away from the MCT, the amount of strain is relatively higher. As such, the method holds importance in those cases where grain shapes (i.e., planar boundaries) put constraint on estimation of strain because the conventional methods of strain estimation require elliptical shape of objects. This is possibly the first application of the Panozzo method on deformed rocks from India.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call