Abstract

The distribution of melt has been mapped in a granite pluton deformed whilst it contained melt. At the outcrop scale, leucomonzogranite melt was segregated from hornblende monzogranite when the rigid crystal framework was tectonically compacted. The melt collected in well-defined, structurally controlled sites that formed during dextral, non-coaxial, strike-slip shearing. The segregations are generally isolated, but locally they link to form extensive branched arrays which drained larger volumes of granite in a two-step process. First, melt drained from the compacting matrix through the array and pooled along dilatant foliation planes; later, the melt moved farther away when a single planar melt-transfer channel formed.Thin section maps show that most melt was distributed in the foliation plane and along the lineation in the crystallising matrix. The location of melt at the grain scale is primarily controlled by the feldspar-dominated shape fabric of the crystal framework, and not by tectonic stresses as at the outcrop scale. Tectonic stresses account for the relatively small proportion of melt films located in grain boundaries normal to the lineation. The distribution of melt-bearing grain boundaries outlines larger domains in the thin sections that form a linked three-dimensional network through which melt moved within the crystallising framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.