Abstract

AbstractFirn microstructure properties from six different sites in Greenland and Antarctica are investigated by means of X-ray microcomputer tomography. The optical effective radius is calculated from the specific surface area (SSA) and used as a measure of grain size. It is shown that the recently introduced spherical approximation of firn grains using the effective radius Reff is representative of grain size in the microwave frequency region. The measured profiles show the well-known increase of grain size with depth at all sites, where the increase is largest at near-surface depths. A large variability in grain size on the decimeter-to-centimeter scale as a result of different grain properties of single layers is superimposed on the overall trend at each site. A simple empirical parameterization of grain-size evolution is developed which allows the rapid grain growth in the uppermost layers of the firn to be predicted. The growth is driven by strong seasonal and diurnal temperature gradients. The model can be used to simulate grain-size profiles required by models of firn/microwave interaction (e.g. for retrieval of accumulation rates from satellite microwave sensors) in a more realistic fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.