Abstract

Single phase Bi1/2Na1/2Cu3Ti4O12 (BNCTO) ceramics with different grain sizes (1.4–4.3 μm) are prepared by a modified Pechini method to investigate their giant dielectric and nonlinear electrical behaviors. The results show that the giant dielectric and nonlinear electrical behaviors are strongly dependent on grain size. With the increment of grain size, the dielectric constant increases monotonically from 14110 (for 1.4 μm sample) to 36183 (for 4.3 μm sample) at 1 kHz, in accompaniment with the breakdown voltage reducing from 112.5 to 43.2 V/mm and the nonlinear coefficient reducing from 4.9 to 3.4. On the basis of the internal barrier layer capacitor (IBLC) model and the IBLC model of Schottky-type potential barrier, an interpretation of the grain size effect on the giant dielectric and nonlinear electrical behaviors is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.