Abstract

This paper reports the mechanical properties and formability under biaxial stretching in pure tantalum as a function of average grain size. The grain size of pure tantalum was adjusted from submicron to tens of micron using the high-pressure torsion process and subsequent annealing. The stretch formability was evaluated using a miniaturized Erichsen tester. Under uniaxial tension, the mechanical properties of pure tantalum followed the typical strength-ductility trade-off behavior according to the average grain size. Nevertheless, the stretch formability became rather significantly inferior in the coarse-grain tantalum, which was primarily attributed to the poor resistance to strain localization and limited work hardening capacity. This deterioration was supposed to be due to the intensified strain localization with increasing the average grain size, based on the in-grain deformation heterogeneity within individual grains and the surface roughening after the Erichsen test. Consequently, this study suggests that the excellent stretch formability and work hardening capacity under biaxial loading can be achieved at a certain range of the average grain size (8.25–19.3 μm in this work).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.