Abstract

The grain size effect on the dynamic behavior of sandstone was investigated through the compression tests on coarse-grained (CG), medium-grained (MG) and fine-grained (FG) sandstones by split Hopkinson pressure bar (SHPB) tests under the strain rates of 69–83 s–1 based on the thin section and electron scanning microscopic (SEM) images analysis, the CG, MG and FG sandstone were mainly composed by quartz with the average grain size of 200–500, 90–500 and 55–120 µm, respectively. With the increasing grain size, the percentage of clay mineral was decreased correspondingly from 8% to 1%. During the dynamic compression, two high-speed cameras were applied to capture the deformation of sandstone at frame rate of 2×105 s–1 and resolution of 256×256. The real-time strain fields of rock were obtained by high-speed three-dimensional digital image correlation (3D-DIC) technique, the dynamic deformative properties, particularly the lateral strain of the specimen, were extracted by averaging the lateral strain field by pixels. The fracturing behavior of three sandstones was analyzed through the strain localization evolution within the strain fields. Results show that the critical strain rate for reversible release of elastic strain energy increases with the decreasing grain size. The dynamic strength ascends along with the reduction of grain size, while the strain rate sensitivity to the dynamic strength has an opposite trend. Compared to the quasi-static case, the dynamic elastic modulus increases by 2–3 times for MG and FG sandstone, particularly 5 times for CG sandstone. The Poisson’s ratio under dynamic loading in FG sandstone is grown by 25%, but drops at 70% of the static one in MG sandstone. The crack primarily generates inside the specimen and propagates to the surface of the specimen afterwards. The crack development is advanced under dynamic loadings, where the normalized stress threshold for crack initiation in FG sandstone is only 10%. Based on the microscopic analysis, mineral structure and clay percentage dominate the dynamic property and fracturing behavior of sandstone, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call